Interactions between Snow Chemistry, Mercury Inputs and Microbial Population Dynamics in an Arctic Snowpack
نویسندگان
چکیده
We investigated the interactions between snowpack chemistry, mercury (Hg) contamination and microbial community structure and function in Arctic snow. Snowpack chemistry (inorganic and organic ions) including mercury (Hg) speciation was studied in samples collected during a two-month field study in a high Arctic site, Svalbard, Norway (79 °N). Shifts in microbial community structure were determined by using a 16S rRNA gene phylogenetic microarray. We linked snowpack and meltwater chemistry to changes in microbial community structure by using co-inertia analyses (CIA) and explored changes in community function due to Hg contamination by q-PCR quantification of Hg-resistance genes in metagenomic samples. Based on the CIA, chemical and microbial data were linked (p = 0.006) with bioavailable Hg (BioHg) and methylmercury (MeHg) contributing significantly to the ordination of samples. Mercury was shown to influence community function with increases in merA gene copy numbers at low BioHg levels. Our results show that snowpacks can be considered as dynamic habitats with microbial and chemical components responding rapidly to environmental changes.
منابع مشابه
Potential drivers of microbial community structure and function in Arctic spring snow
The Arctic seasonal snowpack can extend at times over a third of the Earth's land surface. This chemically dynamic environment interacts constantly with different environmental compartments such as atmosphere, soil and meltwater, and thus, strongly influences the entire biosphere. However, the microbial community associated with this habitat remains poorly understood. Our objective was to inves...
متن کاملActive molecular iodine photochemistry in the Arctic.
During springtime, the Arctic atmospheric boundary layer undergoes frequent rapid depletions in ozone and gaseous elemental mercury due to reactions with halogen atoms, influencing atmospheric composition and pollutant fate. Although bromine chemistry has been shown to initiate ozone depletion events, and it has long been hypothesized that iodine chemistry may contribute, no previous measuremen...
متن کاملMicrobes in high arctic snow and implications for the cold biosphere.
We applied molecular, microscopic, and culture techniques to characterize the microbial communities in snow and air at remote sites in the Canadian High Arctic (Ward Hunt Island, Ellesmere Island, and Cornwallis Island, latitudes 74 to 83(o)N). Members of the Bacteria and Eukarya were prevalent in the snow, and their small subunit (SSU) rRNA gene signatures indicated strong local aerial transpo...
متن کاملMercury dynamics in the Rocky Mountain , Colorado , snowpack
Gaseous elemental mercury (GEM) was monitored at the Niwot Ridge (NWT) Long-Term Ecological Research (LTER) site (Colorado, USA, 40° N) from interstitial air extracted from the snowpack at depths ranging from the snow surface to 10 cm above the soil. A highly dynamic cycling of mercury (Hg) in this mid-latitude snowpack was observed. Patterns were driven by both GEM production in surface snow a...
متن کاملSome sources and sinks of monomethyl and inorganic mercury on Ellesmere Island in the Canadian High Arctic.
We identified some of the sources and sinks of monomethyl mercury (MMHg) and inorganic mercury (HgII) on Ellesmere Island in the Canadian High Arctic. Atmospheric Hg depletion events resulted in the deposition of Hg(II) into the upper layers of snowpacks, where concentrations of total Hg (all forms of Hg) reached over 20 ng/L. However, our data suggest that much of this deposited Hg(II) was rap...
متن کامل